몇년전 약대에 진학한 제자 하나가 중국 쿤밍으로 떠나기 전에 학교를 방문한 적이 있었습니다.
약대에서도 새로운 약 개발을 위해 고산지대 탐방을 떠나곤 한다는 소리를 들었습니다.
이 짧은 대화를 통해 연역적 연구방법에 대해 다시 한번 생각하게 되었습니다.
우리가 '과학'이라 하면
무에서 유를 창조하듯 설명하지만
그 과학이란 것도
경험들을 바탕으로 한다면 훨씬 쉽게 접근이 되겠구나
100% 창조적 가설보다는 경험을 바탕으로 한 연역적 접근을 다들 하고 있던 것이구나
하는 것을 깨닫게 되었습니다.
지리란 인간과 환경의 대화라 생각합니다.
네팔과 부탄이라는 지역, 그리고 거주민.
거주 이래로 지진으로 시달렸을 그 지역 사람들은 지역의 특징에 맞도록 집을 지어왔을텐데
지역 가옥의 진화를 살펴본다면
내신 설계의 비밀을 알 수 있지 않을까? 하는 생각을 하게 되었습니다.
(뭐 여기까지는 완전히 귀납적 접근입니다만.....)
그러다 우연히 잡지에서 이와 관련된 기사를 접하게 되었습니다.
Geography and You (2015년 May-June)
Traditoinl GENIUS and Earthquakes
이 가옥은 네팔지역에 수 많은 지진을 이겨내고 지금까지 굳건히 자리를 지키고 있습니다.
이 지역의 가옥입니다. (이 지역말로는 Sumer라고 한답니다)
오랫동안 지진을 이겨내고 지금까지 자리를 지키고 있다는 것은
이 지역에서 오랫동안 살아온 사람들의 지혜가 축적되어 있는 것일 것입니다.
↑↑↑↑↑
맨 위 사진의 출입구 부분을 확대해봤습니다.
이 사진에서 찾아볼 수 있는 특징을 몇가지로 요약해봤습니다.
① 출입구(창문 포함)이 매우 매우 작다
② 서로 다른 재료가 교차로 반복되고 있다. (돌-돌-돌-나무-나무-돌-돌-돌......)
③ 두 번째 사진에 나온 가옥처럼 두채가 연달아 붙어 있다.
맨 위 가옥에 대한 설명입니다.
Quake resistant houses should have tie-bands just above the level of the floor,
the level of the doors and windows, and another at the roof level.
Corners are the most vulnerable and ought to be strengthened.
Elasticity of the structure can be enhanced with flexible steel rods or wood batons at corners.
Doors and windows should be few, small and symmetrically placed away from the corners.
The house should be as light as possible.
지진에 매우 취약한 곳이 가옥의 모퉁이 부분이라고 합니다.
모퉁이를 강화하기 위해 돌과 나무를 겹쳐서 쌓았는데,
이는 나무의 성격이 탄성이 좋아 지진파에 견디기 좋기 때문이고
(충격을 흡수하기 위해 진흙벽돌도 많이 사용합니다)
나무로만 쌓으면 집의 견고함이 덜어질테니 이 두가지 특징을 모두 취하기 위함일 것입니다.
그리고, 창문과 문은 가능한 그 갯수를 적게 만들고, 크기도 최소화하는 것이 그 특징입니다.
http://db.world-housing.net/pdf_view/150/
Sumer, Chaukhat, Kothi.
In a recent paper, Saklani et al (1999) have tried to bring into focus the old quake-resistant traditional architectural design of the huge multistoried building constructions found in the Garhwal Himalayas. The Garhwal Himalayas representing a mountainous zone on the northwest of India constitute a portion of the great Central Himalayan region, which is known for high seismicity and therefore the presence of such structures here is of remarkable occurrence.
The authors report building structures, five to six stories high in the region, that have endured the ravages of time, weather and geo-activity for hundreds of years. The authors refer to the Yamuna and the Bhagirathi river valleys in the Garhwal Himalayas, where these multistoried constructions are locally known as Sumer, Chaukhat or Kothi. These structures have withstood a number of earthquakes, including the recent severe ones of the 1991 and 1999.
The indigenously devised building technology used to erect Sumers makes use of locally available resources such as long thick wooden logs, stones, slates and clay to specification.
Typical Sumers stand 15 to 17 meters high from the ground level and have 5 to 6 floors, with 4 rooms on each floor. The ground area covered by the Sumer is 8, 6. 5 meters. A foundation trench 3 meters deep and 70 cms wide is first dug and then refilled with flat dressed stones. This foundation is then raised above the ground in the fashion of a rectangular platform, to the height of 2.30 meters with the help of flat stones, clay and stone fillings.
The structure of the Sumer rests upon this platform. To raise the walls, double wooden logs are placed horizontally on the edge of the two parallel sides of the platform, which are opposite each other. The width of the logs determines the thickness of the walls, which is 70 cms. On the other two parallel sides the wall is raised with well-dressed flat stones to the surface level of the logs placed on the other two sides.
The walls are further raised to 30 cms by placing heavy, flat, dressed stones upon the wooden logs on the two sides and by placing another pair of wooden logs upon the stones on the other two opposite sides. The four walls of the structure are thus raised using the wooden logs and dressed up flat stones alternately, up to a height of about 17 meters. The structure is further reinforced with the help of wooden beams fixed alternately that run from the middle of the walls of one side to the other, intersecting at the center.
This arrangement divides the Sumer into four equal parts from within and provides for joists supporting the floorboards in each floor of the building. On the fourth and the fifth floors the Sumer has a balcony, with a wooden railing running around on all four sides. The fourth floor is also provided with a toilet cum bathroom on the balcony. Specially designed wooden ladders provide access to the different floors, which are located within the Sumer. The roof of the Sumer is laid with slate stones.
Technology used in the Chaukhats
� Pairs of thick wooden logs, beginning from the base of any two opposite walls are used at every 30 inches alternately with heavy stones to raise the walls and run to entire length of each of the walls.
� At the right angle where any two walls meet, the edges of the pair of logs on one wall are placed on the edge of the logs of the other and they are joined together by hammering thick wooden nails through them. This has an effect of turning the structure into a single piece construction.
� Any devices used for windows, doorways, ventilators or floor- joists are joined to these well-secured pairs of logs, which further strengthen the structure. The use of pairs of logs gives to the wall a thickness of almost 70 cms.
why traditional buildings are earthquake resistant???
The construction characteristics of traditional buildings in relation to seismicity.
1. Wall thickness:- Its thickness is maximum at the ground floor 45 centimeters. Thickness decreases with succeeding upper floors. As the horizontal thrust at the ground level develops highest at the time of earthquake in a building the greater thickness reduces the shear failure at that time.
2. Mud mortar:- Generally in all structures mud is used as mortar in between bricks.Mud is very weak in strength as compared to the strength of brick and timber. In case of greater thrust the mud mortar cracks and helps to displace wall thus absorbing the thrust. This causes partial collapse preventing total collapse of the building.
3. Wooden elements:- Traditional houses have many timber components like beams, joists, lintels, beautifully carved doors, windows and pillars. The wooden members tie the brick walls making them work as single unit. It prevents the distortion or displacement of walls in case of earthquake. The flexibility of wooden members can absorbs some external forces by bending itself and comes to its original shape after the force is released. It helps from breaking the wall. Even in case of breaking, the timber components prevent from total collapse, i.e. partial collapse takes place.
4. House plan:- The plan of traditional houses are generally rectangular,some are even square, which is very good from the earthquake safety point of view. The ratio of length to breadth is generally less than 2.
5. Height: The height of traditional buildings are generally three and half story. The ratio of height to breadth of house is less than or equal to 2.
동영상입니다.
이런 단체가 있었습니다. GeoHazards International.
오홍~~~ 제가 필요로 하는 정보가 있을 듯 합니다.
뒤지다 뒤지다 찾았습니다. <여기>클릭
위의 링크를 누르시면 이런 문장으로 페이지가 시작합니다.
Where earthquake risk is ever-present, there is a window of opportunity to prevent disaster. We often meet local champions who take this to heart.~~~~~
개그맨 허경환 말대로 "바로 이 맛 아니겠습니꺄~~~~"
'주제별 자료 > 건축' 카테고리의 다른 글
Roman Aqueduct [La Citta' dell'Acqua (city of water)] (0) | 2016.10.24 |
---|---|
Social and Behavioral Sciences (0) | 2016.05.08 |
스페인 비닐하우스 촌의 토마토 전쟁 (Tomato war in Spain) (0) | 2015.07.08 |
이란 Yazd의 명물 'Wind Tower (=windcatcher)' (0) | 2013.05.20 |
카나트(Qanat) by BBC 다큐멘터리 (0) | 2011.04.17 |